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Abstract

Our goal is procedural text comprehension,
namely tracking how the properties of entities
(e.g., their location) change with time given a
procedural text (e.g., a paragraph about pho-
tosynthesis, a recipe). This task is challeng-
ing as the world is changing throughout the
text, and despite recent advances, current sys-
tems still struggle with this task. Our approach
is to leverage the fact that, for many proce-
dural texts, multiple independent descriptions
are readily available, and that predictions from
them should be consistent (label consistency).
We present a new learning framework that
leverages label consistency during training, al-
lowing consistency bias to be built into the
model. Evaluation on a standard benchmark
dataset for procedural text, ProPara (Dalvi
et al., 2018), shows that our approach signif-
icantly improves prediction performance (F1)
over prior state-of-the-art systems.

1 Introduction

We address the task of procedural text comprehen-
sion, namely tracking how the properties of enti-
ties (e.g., their location) change with time through-
out the procedure (e.g., photosynthesis, a cook-
ing recipe). This ability is an important part of
text understanding, allowing the reader to infer un-
stated facts such as how ingredients change during
a recipe, what the inputs and outputs of a scientific
process are, or who met whom in a news article
about a political meeting. Although several proce-
dural text comprehension systems have emerged
recently (e.g., EntNet (Henaff et al., 2017), NPN
(Bosselut et al., 2018), and ProStruct (Tandon et al.,
2018)), they still make numerous prediction errors.
A major challenge is that fully annotated training
data for this task is expensive to collect, because

*Work done while at the Allen Institute for Artificial In-
telligence.

(1) ...oxygen is given off...
(2) ...the plant produces oxygen...
(3) ...is used to create sugar and oxygen...

Figure 1: Fragments from three independent texts
about photosynthesis. Although (1) is ambiguous as
to whether oxygen is being created or merely moved,
evidence from (2) and (3) suggests it is being created,
helping to correctly interpret (1). More generally, en-
couraging consistency between predictions from differ-
ent paragraphs about the same process/procedure can
improve performance.

many state changes by multiple entities may occur
in a single text, requiring complex annotation.

To address this challenge, and thus improve per-
formance, our goals are two-fold: first, to better
leverage the training data for procedural text com-
prehension that is available, and second, to uti-
lize additional unlabeled data for the task (semi-
supervised learning). Our approach in each case is
to exploit label consistency, the property that two
distinct texts covering the same procedure should
be generally consistent in terms of the state changes
that they describe, which constitute the labels to
be predicted for the text. For example, in different
texts describing photosynthesis, we expect them to
be generally consistent about what happens to oxy-
gen (e.g., that it is created), even if the wordings
differ (Figure 1).

Using multiple, distinct passages to understand
a process or procedure is challenging. Although
the texts describe the same process, they might
express the underlying facts at different levels of
granularity, using different wordings, and including
or omitting different details. As a result, the details
may differ between paragraphs, making them hard
to align and to check for consistency. Nonethe-
less, even if the details differ, we conjecture that
the top-level summaries of each paragraph, which



Figure 2: Three (simplified) passages from ProPara describing photosynthesis, the (gold) state changes each entity
undergoes at each step s1, s2, . . . , sT , and the summary of state changes that each entity undergoes (an aggregation
of the step-by-step changes), where M = MOVED, D = DESTROYED, C = CREATED. Although the language and
detailed changes for each passage differ considerably, the overall summaries are largely consistent (e.g., sugar
is CREATED in all three). We exploit this consistency when training a model to make these predictions, by biasing
the model to prefer predictions whose summary is consistent with the (predicted) summaries of other passages
about the same topic. Note that in the summary, we do not care about the order in which state changes happen,
so summary M, D for participant CO2 in passage 1 denotes a set of state changes rather than a sequence of state
changes.

describe the types of state change that each entity
undergoes, will be mostly consistent. For example,
although independent texts describing photosyn-
thesis vary tremendously, we expect them to be
consistent about what generally happens to sugar,
e.g., that it is created (Figure 2).

In this paper, we introduce a new training frame-
work, called LaCE (Label Consistency Explorer),
that leverages label consistency among paragraph
summaries. In particular, it encourages label consis-
tency during end-to-end training of a neural model,
allowing consistency bias to improve the model
itself, rather than be enforced in a post-processing
step, e.g., posterior regularization (Ganchev et al.,
2010). We evaluate on a standard benchmark
for procedural text comprehension, called ProPara
(Dalvi et al., 2018). We show that this approach
achieves a new state-of-the-art performance in the
fully supervised setting (when all paragraphs are
annotated), and also demonstrate that it improves
performance in the semi-supervised setting (us-
ing additional, unlabeled paragraphs) with limited
training data. In the latter case, summary predic-
tions from labeled data act as noisy gold labels for

the unlabeled data, allowing additional learning to
occur. Our contributions are thus:

1. A new learning framework, LaCE, applied to
procedural text comprehension that improves
the label consistency among different para-
graphs on the same topic.

2. Experimental results demonstrating that
LaCE achieves state-of-the-art performance
on a standard benchmark dataset, ProPara, for
procedural text.

2 Related Work

Our work is related to several important branches of
work in both NLP and ML, as we now summarize.

Leveraging Label Consistency Leveraging infor-
mation about label consistency (i.e., similar in-
stances should have consistent labels at a certain
granularity) is an effective idea. It has been studied
in computer vision (Haeusser et al., 2017; Chen
et al., 2018) and IR (Clarke et al., 2001; Dumais
et al., 2002). Learning by association (Haeusser
et al., 2017) establishes implicit cross-modal links
between similar descriptions and leverage more un-
labeled data during training. Schütze et al. (2018);



Hangya et al. (2018) adapt the similar idea to ex-
ploit unlabeled data for the cross-lingual classifica-
tion. We extend this line of research in two ways:
by developing a framework allowing it to be ap-
plied to the task of structure prediction; and by
incorporating label consistency into the model it-
self via end-to-end training, rather than enforcing
consistency as a post-processing step.

Semi-supervised Learning Approaches Besides
utilizing the label consistency knowledge, our
learning framework is also able to use unlabeled
paragraphs, which fits in the literature of semi-
supervised learning approaches (for NLP). Zhou
et al. (2003) propose an iterative label propaga-
tion algorithm similar to spectral clustering. Zhu
et al. (2003) propose a semi-supervised learning
framework via harmonic energy minimization for
data graph. Talukdar et al. (2008) propose a graph-
based semi-supervised label propagation algorithm
for acquiring open-domain labeled classes and their
instances from a combination of unstructured and
structured text sources. Our framework extends
these ideas by introducing the notion of groups
(examples that are expected to be similar) and sum-
maries (what similarities are expected), applied in
an end-to-end-framework.

Procedural Text Understanding and Reading
Comprehension There has been a growing interest
in procedural text understanding/QA recently. The
ProcessBank dataset (Berant et al., 2014) asks ques-
tions about event ordering and event arguments for
biology processes. bAbI (Weston et al., 2015) in-
cludes questions about movement of entities, how-
ever it’s synthetically generated and with a small
lexicon. Kiddon et al. (2015)’s RECIPES dataset
introduces the task of predicting the locations of
cooking ingredients, and Kiddon et al. (2016) for
recipe generation. In this paper, we continue this
line of exploration using ProPara, and illustrate how
the previous two lines of work (label consistency
and semi-supervised learning) can be integrated.

3 Problem Definition

3.1 Input and Output

A general condition for applying our method is
having multiple examples where, for some proper-
ties, we expect to see similar values. For example,
for procedural text, we expect paragraphs about
the same process to be similar in terms of which
entities move, are created, and destroyed; for dif-

ferent news stories about a political meeting, we
expect top-level features (e.g., where the meeting
took place, who attended) to be similar; for differ-
ent recipes for the same item, we expect loosely
similar ingredients and steps; and for different im-
ages of the same person, we expect some high-level
characteristics (e.g., height, face shape) to be simi-
lar. Note that this condition does not apply to every
learning situation; it only applies when training
examples can be grouped, where all group mem-
bers are expected to share some characteristics that
we can identify (besides the label used to form the
groups in the first place).

More formally, for training, the input is a set of
labeled examples (xgi, ygi) (where ygi are the labels
for xgi), partitioned into G groups, where the g sub-
script denotes which group each example belongs
to. Groups are defined such that examples of the
same group g are expected to have similar labels
for a subset of labels ygi. We call this subset the
summary labels. We assume that both the group-
ings and the identity of the summary labels are
provided. The output of training is a model M for
labeling new examples. For testing, the input is the
model M and a set of unlabeled (and ungrouped)
examples xt, and the output are their predicted la-
bels ŷt. Note that this formulation is agnostic to the
learning algorithm used. Later, we will consider
both the fully supervised setting (all training exam-
ples are labeled) and semi-supervised setting (only
a subset are labeled).

3.2 Instantiation
We instantiate this framework for procedural text
comprehension, using the ProPara task (Dalvi et al.,
2018). In this task, xgi are paragraphs of text de-
scribing a process (e.g., photosynthesis), the labels
ygi describe the state changes that each entity in the
paragraph undergoes at each step (sentence) (e.g.,
that oxygen is created in step 2), and the groups
are paragraphs about the same topic (ProPara tags
each paragraph with a topic, e.g., there are three
paragraphs in ProPara describing photosynthesis).
More precisely, each xgi consists of:

• the name (topic) of a process, e.g., photosyn-
thesis
• a sequence (paragraph) of sentences S =

[s1, ..., sT ] that describes that process
• the set of entities E mentioned in that text,

e.g., oxygen, sugar

and the targets (labels) to predict are:



Figure 3: Example of batches constructed from a group (here, the group contains three labeled examples x1, x2, x3).
From three examples, three batches are constructed. Taking the predicted labels for the first element in the batch
as reference we compute the consistency loss for the remaining elements.

• the state changes that each entity in E
undergoes at each step (sentence) of the
process, where a state change is one of
{Moved,Created,Destroyed,None}.
These state changes can be conveniently
expressed using a |S | × |E| matrix (Figure 2).
State changes also include arguments, e.g.,
the source and destination of a move. We omit
these in this paper to simplify the description.

Finally, we define the summary labels as the set of
state changes that each entity undergoes at some
point in the process, without concern for when. For
example, in Passage 1 in Figure 2, CO2 is Moved
(M) and Destroyed (D), while sugar is Created
(C). These summary labels can be computed from
the state-change matrix by aggregating the state
changes for each entity over all steps. Our assump-
tion here is that these summaries will generally be
the same (i.e., consistent) for different paragraphs
about the same topic. LaCE then exploits this as-
sumption by encouraging this inter-paragraph con-
sistency during training, as we now describe.

4 Label Consistency Explorer: LaCE

4.1 The LaCE Learning Framework

While a traditional supervised learning model op-
erates on individual examples, LaCE operates on
batches of grouped examples Xg. Given a group
g containing N labeled examples {x1, ..., xN} (we
drop the g subscript for clarity), LaCE creates N
batches, each containing all the examples but with
a different xi labeled as “primary”, along with the
gold labels yi for (only) the primary example. (We
informally refer to the primary example as the “first

example” in each batch). Then for each batch,
LaCE jointly optimizes the usual supervised loss
Lsup(ŷi, yi) for the primary example, along with a
consistency loss between (summary) predictions
for all other members of the group and the primary
example, Lcon(ŷ j, ŷi) for all j , i. This is illustrated
in Figures 4 and 3. This is repeated for all batches.

For example, for the three paragraphs about pho-
tosynthesis (Figure 2), batch 1 compares the first
paragraph’s predictions with its gold labels, and
also compares the summary predictions of para-
graphs 2 and 3 with those of the first paragraph
(Figure 3). This is then repeated using paragraph 2,
then paragraph 3 as primary.

The result is that LaCE jointly optimizes the
supervised loss Lsup and consistency loss Lcon to
train a model that is both accurate for the given
task as well as consistent in its predictions across
examples that belong to the same group.

This process is approximately equivalent to
jointly optimizing the usual supervised loss
Lsup(ŷi, yi) for all examples in the group, and the
pairwise consistency loss Lcon(ŷ j, ŷi) for all pairs
(x j, xi), j , i in the group. However, there is an
important difference, namely the relative contri-
butions of Lsup and Lcon is varied among batches,
depending on how accurate the predictions for the
primary example are (i.e., how small Lsup is), as
we describe later in Section 4.3. This has the effect
of paying more attention to consistency loss when
predictions on the primary are more accurate.

We also extend LaCE to the semi-supervised
setting as follows. For the semi-supervised setting,
where only m of n (m < n) examples are labeled,
we only form m batches, where each batch has
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Figure 4: Overview of the LaCE training framework, illustrated for the procedural comprehension task ProPara.
During training, LaCE processes batches of examples {x1,...,xk} for each group Xg, where predictions for one
example (here ŷ1) are compared against its gold (producing loss Lsup), and its summary against summaries of all
other examples to encourage consistency of predictions (producing Lcon), repeating for each example in the batch.

a different labeled example as primary. We later
report experiments results for both the fully and
semi-supervised settings.

4.2 Base Model for Procedural Text
We now describe how LaCE is applied to our
goal of comprehending procedural text. Note that
LaCE is agnostic to the learner used within the
framework. For this application, we use a simpli-
fied version of ProStruct (Tandon et al., 2018), a
publicly available system designed for the ProPara
task. Our implementation simplifies ProStruct by
reusing its encoder, but then predicting (a distribu-
tion over) each state change label independently
during decoding for every cell in the |S | × |E| grid
(Figure 2). We briefly summarize this here.

4.2.1 Encoder
ProStruct uses an encoder-decoder architecture that
takes procedural text as input and predicts the state
changes of entities E in the text as output. During
encoding, each step st is encoded using |E| embed-
dings, one for each entity e j ∈ E. Each embedding
represents the action that st describes, applied to
ek. The model thus allows the same action to have
different effects on different entities (e.g., a trans-
formation destroys one entity, and creates another).

For each (st, e j) ∈ S × E pair, the step is fed into

a BiLSTM (Hochreiter and Schmidhuber, 1997),
using pretrained GloVe (Pennington et al., 2014)
vectors vw for each word wi concatenated with two
indicator variables, one indicating whether wi is a
word referring to e j, and one indicating whether wi

is a verb. A bilinear attention layer then computes
attention over the contextualized vectors hi output
by the BiLSTM: ai = hi∗B∗hev +b , where B and b
are learned parameters, and hev is the concatenation
of he (the averaged contextualized embedding for
the entity words we) and hv (the averaged contextu-
alized embedding for the verb words wv).

Finally, the output vector ct j is the attention-
weighted sum of the hi: ct j =

∑I
i=1 ai ∗ hi . Here,

ct j can be thought of as representing the action st

applied to entity e j. This is repeated for all steps
and entities.

4.2.2 Decoder

To decode the action vectors ct j into their resulting
state changes they imply, each is passed through a
feedforward layer to generate logit(πt j), a set of lo-
gistic activations over the K possible state changes
πt j for entity e j in step st. For ProPara, there are
K = 4 possible state changes: Move, Create,
Destroy, and None. These logits form a distribu-
tion over possible state changes to predict, for each



entity and step in the text. We then compute loss,
described next, using these distributions directly
rather than discretizing them into exact predictions
at this stage, so as not to lose information.

4.3 Applying LaCE

4.3.1 Batching

We start by creating training batches for each Xgi ∈

Xg. From a group Xgi comprising of n examples,
we create n training batches. A batch consists of all
n examples (x1, x2, ..., xn), but the loss computation
is different in each batch. Figure 3 illustrates this.

4.3.2 Loss Computation

The loss computation in a batch is based on the
usual supervised loss and additionally the consis-
tency loss, as follows:

Lbatch = λ Lsup(ŷ1, y1)︸       ︷︷       ︸
supervised loss

+ (1 − λ)
n∑

i=2

Lcon(ŷi, ŷ1)︸            ︷︷            ︸
consistency loss

(1)
Here, Lsup(ŷ1, y1) is the negative log likelihood

loss* against the gold labels y1, and λ is a hyperpa-
rameter tuned on the dev set.

To compute the consistency loss Lcon(ŷi, ŷ1), we
compare the summaries computed from ŷi and ŷ1.
In our particular application, a summary lists all
the state changes each entity undergoes, formed
by aggregating its step-by-step state changes. For
example, for paragraph x1 in Figure 4, as CO2 first
moves (M), then later is destroyed (D), we summa-
rize its state changes as s(CO2, ŷ1) = {M,D}. In
practice, as our decoder outputs distributions over
the four possible values {M,C,D,N} rather than a
single value, we summarize by adding and nor-
malizing these distributions, producing a summary
distribution s(e, ŷ j) over the four values rather than
a discrete set of values.

To compute the consistency loss Lcon(ŷi, ŷ1) it-
self, we compare summaries for each entity e that
occurs in both paragraph x1 and paragraph xi (re-
ferred to as Ent(x1) and Ent(xi) respectively), and
compute the average mean squared error (MSE)
between their summary distributions. We also
tried other alternatives (e.g., Kullback-Leibler di-
vergence) for calculating the distance between sum-
mary distributions, but mean squared error per-

*Loss function Lsup is exactly same as the loss function
used in the base model so that we can measure the effect of
adding consistency loss.

forms best. Equation 2 shows the details for com-
puting the consistency loss.

Lcon(ŷi, ŷ1) =

∑
e∈Ent(xi)∩Ent(x1) MSE(s(e, ŷi), s(e, ŷ1))

|Ent(xi) ∩ Ent(x1)|
(2)

Note that each paragraph contains varying num-
ber of entities and sentences. It is possible that
some paragraphs do not mention exactly the same
entities as the labeled paragraph (first element in
the batch). In such cases, we penalize the model
only for predictions for co-occurring entities. Un-
matched entities are not penalized.

4.3.3 Adaptive Loss
The supervised loss Lsup(ŷ1, y1) is large in the early
epochs when the model is not sufficiently trained.
At this point, it is beneficial for the model to pay
no attention to the consistency loss Lcon(ŷ j, ŷ1) as
the predicted action distributions are inaccurate. To
implement this, if Lsup is above a defined threshold
then the consistency loss term in Equation 1 is
ignored (i.e. λ = 1). Otherwise, Equation 1 is
used as is. This can loosely be seen as a form
of simulated annealing (Kirkpatrick et al., 1988),
using just two temperatures. Note that the time
(epoch number) when the temperature (lambda)
changes will vary across batches depending on the
supervised loss within that batch of data, hence we
call it an “adaptive” loss.

5 Experimental Results

We now present results on ProPara, the procedural
text comprehension dataset introduced in (Dalvi
et al., 2018). There are 187 topics in this dataset
and a total of 488 labeled paragraphs (around 3
labeled paragraphs per topic). The task is to track
how entities change state through the paragraph
(as described in Section 3.2) and answer 4 classes
of questions about those changes (7043/913/1095
questions in each of the train/dev/test partitions re-
spectively). We compare LaCE with the baselines
and prior state-of-the-art model ProStruct (Tandon
et al., 2018) in two settings: (1) Fully supervised
learning (using all the training data). (2) Semi-
supervised learning (using some or all of the train-
ing data, plus additional unlabeled data).

5.1 Fully Supervised Learning
We evaluated LaCE by comparing its perfor-
mance against published, state-of-the-art results on
ProPara, using the full training set to train LaCE.



Models P R F1

EntNet (Henaff et al., 2017) 54.7 30.7 39.4
QRN (Seo et al., 2017) 60.9 31.1 41.1
ProLocal (Dalvi et al., 2018) 81.7 36.8 50.7
ProGlobal (Dalvi et al., 2018) 61.7 44.8 51.9
ProStruct (Tandon et al., 2018) 74.3 43.0 54.5

LaCE (our model) 75.3 45.4 56.6

Table 1: Comparing the performance of LaCE with
prior methods on the test partition of ProPara.

Models P R F1

LaCE 75.3 45.4 56.6
- consistency loss Lcon 69.6 43.1 53.2

Table 2: LaCE ablation results

The results are shown in Table 1. In Table 1, all the
baseline numbers are the results reported in (Tan-
don et al., 2018). Note that all these baselines are
trying to reduce the gap between predicted labels
and gold labels on the training dataset. LaCE, how-
ever, also optimizes for consistency across labels
for groups of paragraphs belonging to the same
topic. As LaCE uses parts of ProStruct as its learn-
ing algorithm, the gains over ProStruct appear to be
coming directly from its novel learning framework
described in Section 4.1. To confirm this, we also
performed an ablation study, removing the consis-
tency loss term and just using the base model in
LaCE. The results are shown in Table 2, and show
that the F1 score drops from 56.6 to 53.2, illustrat-
ing that the consistency loss is responsible for the
improvement. In addition, Table 2 indicates that
consistency loss helps improve both precision and
recall.

Also note that LaCE simplifies parts of ProStruct.
For example, unlike ProStruct, LaCE does not use
a pre-computed knowledge base during decoding.
Thus LaCE is more efficient to train than ProStruct
(>15x faster at training time).

5.2 Semi-Supervised Learning

Unlike the other systems in Table 1, LaCE is able
to use unlabeled data during training. As described
in Section 4.1, given a group containing both la-
beled and unlabeled paragraphs, we create as many
batches as the number of labeled paragraphs in the
group. Hence, paragraphs xi with gold labels yi can
contribute to both supervised loss Lsup and consis-
tency loss Lcon. Additionally, we can use unlabeled

Models Proportion of labeled paragraphs
used per training topic

33% 66% 100%

ProStruct 45.4 50.6 54.5

LaCE 47.3 51.2 56.6
LaCE + unlabeled data 49.9 52.9 56.7

Table 3: Comparing LaCE vs. ProStruct with vary-
ing amount of labeled paragraphs available per training
topic. We compare their performance in terms of F1 on
ProPara test partition.

paragraphs x j (i.e., without gold labels y j), while
computing consistency loss Lcon. This way LaCE
can make use of unlabeled data during training.

To evaluate this, we collected 877 additional un-
labeled paragraphs for ProPara topics†. As the orig-
inal ProPara dataset makes some simplifying as-
sumptions, in particular that events are mentioned
in chronological order, we used Mechanical Turk
to collect additional paragraphs that conformed
to those assumptions (rather than collecting para-
graphs from Wikipedia, say). Approximately 3
extra paragraphs were collected for each topic in
ProPara. Note that collecting unlabeled paragraphs
is substantially less expensive than labeling para-
graphs.

Train Dev Test Unlabeled

# paragraphs 391 54 43 877

Table 4: ProPara Paragraphs Statistics

We then trained the ProStruct and LaCE mod-
els varying two different parameters: (1) the per-
centage of the labeled (ProPara) training data used
to train the system (2) for LaCE only, whether
the additional unlabeled data was also used. This
allows us to see performance under different con-
ditions of sparsity of labeled data, and (for LaCE)
also assess how much unlabeled data can help un-
der those conditions. During training, the unused
labeled data was ignored (not used as unlabeled
data). We keep the dev and test partitions the same
as original dataset, picking a model based on dev
performance and report results on test partition.
The results are shown in Table 3. In the first two
rows, ProStruct and LaCE are both trained with
x% of labeled data, while the last row reports per-

†The unlabeled paragraphs are available at http://data.
allenai.org/propara/.

http://data.allenai.org/propara/
http://data.allenai.org/propara/


Figure 5: Comparing LaCE vs. ProStruct based on
Recall on the test partition, by varying amount of la-
beled paragraphs available per training topic

formance of LaCE when it also has access to new
unlabeled paragraphs.

Table 3 demonstrates that LaCE results in even
larger improvements over ProStruct when the
amount of labeled data is limited. In addition,
unlabeled data adds an additional boost to this
performance, in particular when labeled data is
sparse. Further examination suggests that the gains
in F1 are resulting mainly from improved recall, as
shown in Figure 5. We believe that having access to
unlabeled paragraphs and optimizing consistency
across paragraphs for training topics, helps LaCE
generalize better to unseen topics.

5.3 Implementation Details for LaCE

We implement our proposed model LaCE in Py-
Torch (Paszke et al., 2017) using the AllenNLP
(Gardner et al., 2018) toolkit. We added a new
data iterator that creates multiple batches per topic
(Figure 3) which enables easy computation of con-
sistency loss. We use 100D Glove embeddings
(Pennington et al., 2014), trained on Wikipedia
2014 and Gigaword 5 corpora (6B tokens, 400K
vocab, uncased). Starting from glove embeddings
appended by entity and verb indicators, we use
bidirectional LSTM layer to create contextual rep-
resentation for every word in a sentence. We use
100D hidden representations for the bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) shared
between all inputs (each direction uses 50D hidden
vectors). We use attention layer on top of BiL-
STM, using a bilinear similarity function similar
to (Chen et al., 2016) to compute attention weights
over the contextual embedding for each word in the
sentence.

To compute the likelihood of all state changes

Consistency Score (%)

Train Test

ProStruct 46.70 37.21
LaCE 54.39 38.36

Table 5: Consistency score comparison

individually, we use a single layer feedforward net-
work with input dimension of 100 and output 4.
In these experiments, we check if the supervised
loss Lsup is less than a threshold (0.2 in our case)
then we use equation 1 and lambda = 0.05. All
hyper-parameters are tuned on the dev data.

During training we use multiple paragraphs for
a topic to optimize for both supervised and con-
sistency loss. At test time, LaCE’s predictions
are based on only one given paragraph. All the
performance gains are due to the base model be-
ing more robust due to proposed training proce-
dure. The code for LaCE model is published at
https://github.com/allenai/propara.

5.4 Analysis and Discussion

We first discuss the predicted label consistency
across paragraphs for LaCE vs. ProStruct. We
then identify some of the limitations of LaCE.

Label Consistency
LaCE attempts to encourage consistency between
paragraphs about the same topic during training,
and yield similar benefit at test time. To examine
whether this happens in practice, we compute and
report the consistency score between paragraphs
about the same topic (Table 5). Specifically, for
an entity that appears in two paragraphs about the
same topic, we compare whether the summaries
of state change predictions for each match. The
results are shown in Table 5.

The table shows that LaCE achieves greater pre-
diction consistency during training, and that this
benefit plays out to some extent at test time even
though label consistency is not enforced at test time
(we do not assume that examples are grouped at
test time, hence consistency between groups cannot
be enforced as the grouping is unknown). As an
illustration, for the topic describe the life cycle of a
tree which is unseen at training time, for the three
paragraphs on the topic, ProStruct predicts that tree
is created; not-changed; and created respectively,
while LaCE correctly predicts that tree is created;
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created; and created respectively. This illustrates a
case where LaCE has learned to make predictions
that are more consistent and correct.

Error Analysis for LaCE

To understand LaCE’s behavior further, we exam-
ined cases where LaCE’s and ProStruct’s predic-
tions differ, and examined their agreement with
gold labels. In this analysis we found three major
sources of errors for LaCE:

• The label consistency assumption does not
always hold: In Section 3.1, we explain that
LaCE relies on summary labels being consis-
tent across examples in the same group. We
found that for some of the topics in our training
dataset this assumption is sometimes violated.
E.g., for the topic How does the body control its
blood sugar level?, there are two different para-
graphs; one of them describes the entity sugar
as being Created and then Destroyed to cre-
ate bloodsugar, while the other paragraph de-
scribes the same event in a different way by say-
ing that the entity sugar is Created and then
Moved to the blood. LaCE can thus goes wrong
when trying to enforce consistency in such cases.

• Lexical variance between entities across
paragraphs: Different paragraphs about the
same topic may describe the procedure using
different wordings, resulting in errors. For exam-
ple, in paragraphs about the topic what happens
during photosynthesis?, the same entity (carbon
dioxide) is referred to by two different strings,
CO2 in one paragraph and carbon dioxide in
another. Currently, LaCE does not take into ac-
count entity synonyms, so it is unable to encour-
age consistency here. An interesting line of fu-
ture work would be to use the embedding space
similarity between entity names, to help address
this problem.

• LaCE can make incorrect predictions to im-
prove consistency: For the topic Describe how
to make a cake at training time, when presented
with two paragraphs, LaCE tries to be consistent
and incorrectly predicts that cake is Destroyed
in both paragraphs. ProStruct does not attempt
to improve prediction consistency, here resulting
in less consistent but in this case more accurate
predictions for this topic.

5.5 Directions For Enhancing LaCE
• Improve LaCE for ProPara: LaCE’s perfor-

mance on ProPara can be improved further by
a) soft matching of entities across paragraphs
instead of current exact string match b) ex-
ploring more systematic ways (e.g., simulated
annealing) to define adaptive loss c) using ad-
ditional sources of unlabeled data (e.g., web,
textbooks) weighed by their reliability.

• Apply LaCE on other tasks: Architecturally,
LaCE is a way to train any existing struc-
tured prediction model for a given task to
produce consistent labels across similar data-
points. Hence it can be easily applied to other
tasks where parallel data is available (group-
ing function) and there is a way to efficiently
compare predictions (summary labels) across
parallel datapoints, e.g. event extraction from
parallel news articles (Chinchor, 2002).

Further, summary labels need not be action
categories (e.g., Created, Destroyed). Con-
sistency can also be computed for QA task
where multiple parallel text is available for
reading comprehension. We plan to explore
this direction in the future.

6 Conclusion

Our goal is procedural text comprehension, a task
that current systems still struggle with. Our ap-
proach has been to exploit the fact that, for many
procedures, multiple independent descriptions ex-
ist, and that we expect some consistency between
those descriptions. To do this, we have presented
a task- and model-general learning framework,
LaCE, that can leverage this expectation, allow-
ing consistency bias to be built into the learned
model. Applying this framework to procedural text,
the resulting system obtains new state-of-the-art
results on the ProPara dataset, an existing bench-
mark for procedural text comprehension. It also
demonstrates the ability to benefit from unlabeled
paragraphs (semi-supervised learning), something
that prior systems for this task were unable to do.
We have also identified several avenues for further
improvement (Section 5.4), and are optimistic that
further gains can be achieved.
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